Abstract
The recombination dynamics of charge carriers in organic bulk-heterojunction (BHJ) solar cells made of the blend system poly(2,5-bis(3-dodecylthiophen-2-yl) thieno[2,3-b]thiophene) (pBTCT-C 12 ):[6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM) with a donor-acceptor ratio of 1:1 and 1:4 are studied here. The techniques of charge-carrier extraction by linearly increasing voltage (photo-CELIV) and, as local probe, time-resolved microwave conductivity are used. A difference of one order of magnitude is observed between the two blends in the initially extracted charge-carrier concentration in the photo-CELIV experiment, which can be assigned to an enhanced geminate recombination that arises through a fine interpenetrating network with isolated phase regions in the 1:1 pBTCTC 12 :PC 61 BM BHJ solar cells. In contrast, extensive phase segregation in 1:4 blend devices leads to an efficient polaron generation that results in an increased shortcircuit current density of the solar cells. For both studied ratios a bimolecular recombination of polarons is found using the complementary experiments. The charge-carrier decay order of above two for temperatures below 300 K can be explained on the basis of a release of trapped charges. This mechanism leads to delayed bimolecular recombination processes. The experimental findings can be generalized to all polymer:fullerene blend systems allowing for phase segregation. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Original language | English (US) |
---|---|
Pages (from-to) | 1687-1692 |
Number of pages | 6 |
Journal | Advanced Functional Materials |
Volume | 21 |
Issue number | 9 |
DOIs | |
State | Published - May 10 2011 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-14ASJC Scopus subject areas
- Biomaterials
- Electrochemistry
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics