Abstract
It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties. © 2014 by the authors.
Original language | English (US) |
---|---|
Pages (from-to) | 2273-2300 |
Number of pages | 28 |
Journal | Materials |
Volume | 7 |
Issue number | 3 |
DOIs | |
State | Published - Mar 19 2014 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): CRG-1-2012-THO-015
Acknowledgements: Ioan Botiz thanks Paul Freyberg for reading the manuscript. Natalie Stingelin acknowledges her support by a European Research Council (ERC) Starting Independent Researcher Fellowship under the grant agreement No. 279587 and KAUST Competitive Research Grant (CRG-1-2012-THO-015).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.