Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR)

Claudia Sanchez Huerta, Luca Fortunato, TorOve Leiknes, Pei-Ying Hong

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The presence of organic micropollutants (OMPs) in natural water bodies has become an emerging concern due to their fast dissemination into natural water sources, high persistence, ubiquitous nature, and detrimental impact on the environment and human health. This study evaluated the Membrane Aerated Biofilm Reactor (MABR) efficiency in the removal of 13 OMPs commonly reported in water. Results demonstrated that OMPs removal is dependent on biofilm thickness and bacterial cell density, microbial community composition and physicochemical properties of OMPs. Effective removals of ammonium and organic carbon (COD, >50%), acetaminophen (70%) and triclosan (99%) were obtained even at early stages of biofilm development (thickness < 0.33 mm, 2.9 ×105 cell mL−1). An increase in biofilm thickness and cell density (1.02 mm, 2.2 ×106 cell mL−1) enhanced the system performance. MABR achieved over 90% removal of nonpolar, hydrophobic and hydrophilic OMPs and 22–69% removal of negatively charged and acidic OMPs. Relative abundances of Zoogloea, Aquabacterium, Leucobacter, Runella, and Paludilbaculum bacteria correlated with the removal of certain OMPs. In addition, MABR achieved up to 96% nitrification and 80% overall COD removal by the end of the experiment. The findings from this study demonstrated MABRs to be a feasible option to treat municipal wastewater polluted by OMPs.
Original languageEnglish (US)
Pages (from-to)128698
JournalJournal of Hazardous Materials
Volume432
DOIs
StatePublished - Mar 26 2022

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution
  • Environmental Engineering
  • Health, Toxicology and Mutagenesis
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR)'. Together they form a unique fingerprint.

Cite this