Abstract
Knowledge of preferential flow in heterogeneous environments is essential for enhanced hydrocarbon recovery, geothermal energy extraction, and successful sequestration of chemical waste and carbon dioxide. Dual tracer tests using nanoparticles with a chemical tracer could indicate the preferential flow. A dual-permeability model with a high permeable core channel surrounded by a low permeable annulus was constructed and used to determine the viability of an inert carbon nanoparticle tracer for this application. A series of column experiments were conducted to demonstrate how this nanoparticle tracer can be used to implement the dual tracer tests in heterogeneous environments. The results indicate that, with the injection rate selected and controlled appropriately, nanoparticles together with a chemical tracer can assess the preferential flow in heterogeneous environments. The results also implement the dual tracer tests in heterogeneous environments by simultaneously injecting chemical and nanoparticle tracers.
Original language | English (US) |
---|---|
Pages (from-to) | 7365-7374 |
Number of pages | 10 |
Journal | Industrial & Engineering Chemistry Research |
Volume | 56 |
Issue number | 25 |
DOIs | |
State | Published - Jun 15 2017 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: We thank experts in the Cornell University Department of Biological and Environmental Engineering for advice and materials, and the Cornell University Physics Department Machine Shop for fabrication of the apparatus. This research was supported by Award KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST), the general fund contribution to L. M. Cathles from the International Research Institute of Stavanger, the National Natural Science Foundation of China (Grant 51604291), the Natural Science Foundation of Shandong Province (Grant ZR2016EEB05), the Applied Fundamental Research Project Funded by Original Innovation Program of Qingdao City (Grant 17-1-1-34-jch), the Fundamental Research Funds for the Central Universities (Grants 17CX02010A, 15CX08004A), the China Scholarship Council for C. Yao (Grant 201306450015), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1294).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.