Abstract
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method's superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
Original language | English (US) |
---|---|
Pages (from-to) | 472-477 |
Number of pages | 6 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 61 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2013 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported in part by an Academic Excellence Alliance program award from the King Abdullah University of Science and Technology (KAUST) Global Collaborative Research under the title "Energy Efficient Photonic and Spintronic Devices" and in part by the Center for Uncertainty Quantification in Computational Science and Engineering at KAUST.
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Condensed Matter Physics