In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability

Sheng Wang, Nannan Wang, Dan Kai, Bofan Li, Jing Wu, Jayven Chee Chuan YEO, Xiwei Xu, Jin Zhu, Xian Jun Loh, Nikos Hadjichristidis, Zibiao Li

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Polymeric nanofibers are attractive nanomaterials owing to their high surface-area-to-volume ratio and superior flexibility. However, a difficult choice between durability and recyclability continues to hamper efforts to design new polymeric nanofibers. Herein, we integrate the concept of covalent adaptable networks (CANs) to produce a class of nanofibers ⎯ referred to dynamic covalently crosslinked nanofibers (DCCNFs) via electrospinning systems with viscosity modulation and in-situ crosslinking. The developed DCCNFs possess homogeneous morphology, flexibility, mechanical robustness, and creep resistance, as well as good thermal and solvent stability. Moreover, to solve the inevitable issues of performance degradation and crack of nanofibrous membranes, DCCNF membranes can be one-pot closed-loop recycled or welded through thermal-reversible Diels-Alder reaction. This study may unlock strategies to fabricate the next generation nanofibers with recyclable features and consistently high performance via dynamic covalent chemistry for intelligent and sustainable applications.
Original languageEnglish (US)
JournalNature Communications
Issue number1
StatePublished - Mar 2 2023

Bibliographical note

KAUST Repository Item: Exported on 2023-03-06
Acknowledgements: The authors would like to acknowledge the financially supported from the Agency for Science, Technology and Research (A*STAR) under its RIE2025 Manufacturing, Trade and Connectivity (MTC) Programmatic Funding (Grant No. M22K9b0049, Z.L.), AME Young Individual Research Grants (YIRG) (Grant No. A2084c0168, Z.L.), A*STAR Central Funds (Grant No. C211718004, Z.L.) and A*STAR Career Development Fund – Seed Project 2022 (Grant No. C222812032, B.L.). N.H. acknowledges the support of the King Abdullah University of Science and Technology (KAUST).

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemistry(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability'. Together they form a unique fingerprint.

Cite this