TY - JOUR
T1 - In Silico Study Of Natural Compound Candidates As Promising Drugs For SARS-Cov-2
AU - Hussien, Mostafa A.
AU - Sharfalddin, Abeer A.
AU - Jaremko, Mariusz
N1 - KAUST Repository Item: Exported on 2021-12-09
PY - 2021/11
Y1 - 2021/11
N2 - Molecular docking is a highly sophisticated method that has been utilized in drug design in various biological fields. We are currently suffering from the global pandemic caused by the new coronavirus (SARS-CoV-2), which advanced rapidly and needs immediate action. Therefore, to find an effective anti-viral drug for SARS-CoV-2, thirteen natural products with high bioactivities against another series of viruses were screened for their interactions with the SARS-CoV-2 at different stages of viral development using molecular docking. Among the investigated herbal medicines, Saikosaponin C exhibited the highest docking scores and strong and stable binding interactions with all chosen proteins. The practical binding energy score of Saikosaponin C was -11.79 KJ/mol with 1O86 protease, which represents ACE2, the first infection stage target protein. Moreover, it also showed strong binding (-11.4 KJ/mol) to proteases PLpro (Papain-like protease) PDB = 4OW0, which represents the last stage of virus replication in the host cell. Therefore, we suggest that, after further validation and investigation, this extracted molecule can be used as a potential inhibitor against SARS-CoV-2.
AB - Molecular docking is a highly sophisticated method that has been utilized in drug design in various biological fields. We are currently suffering from the global pandemic caused by the new coronavirus (SARS-CoV-2), which advanced rapidly and needs immediate action. Therefore, to find an effective anti-viral drug for SARS-CoV-2, thirteen natural products with high bioactivities against another series of viruses were screened for their interactions with the SARS-CoV-2 at different stages of viral development using molecular docking. Among the investigated herbal medicines, Saikosaponin C exhibited the highest docking scores and strong and stable binding interactions with all chosen proteins. The practical binding energy score of Saikosaponin C was -11.79 KJ/mol with 1O86 protease, which represents ACE2, the first infection stage target protein. Moreover, it also showed strong binding (-11.4 KJ/mol) to proteases PLpro (Papain-like protease) PDB = 4OW0, which represents the last stage of virus replication in the host cell. Therefore, we suggest that, after further validation and investigation, this extracted molecule can be used as a potential inhibitor against SARS-CoV-2.
UR - http://hdl.handle.net/10754/673898
UR - https://www.ijstr.org/final-print/nov2021/In-Silico-Study-Of-Natural-Compound-Candidates-As-Promising-Drugs-For-Sars-cov-2.pdf
M3 - Article
JO - International Journal of Scientific & Technology Research
JF - International Journal of Scientific & Technology Research
ER -