Abstract
We present a new way of converting a reversible finite Markov chain into a nonreversible one, with a theoretical guarantee that the asymptotic variance of the MCMC estimator based on the non-reversible chain is reduced. The method is applicable to any reversible chain whose states are not connected through a tree, and can be interpreted graphically as inserting vortices into the state transition graph. Our result confirms that non-reversible chains are fundamentally better than reversible ones in terms of asymptotic performance, and suggests interesting directions for further improving MCMC.
Original language | English (US) |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 |
State | Published - Dec 1 2010 |
Externally published | Yes |