Improving Metal Adsorption on Triethylenetetramine (TETA) Functionalized SBA-15 Mesoporous Silica Using Potentiometry, EPR and ssNMR

Joanna Izabela Lachowicz, Abdul-Hamid Emwas, Giulia Rossella Delpiano, Andrea Salis, Marco Piludu, Lukasz Jaremko, Mariusz Jaremko

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Nanomaterials have received growing attention in the treatment and diagnosis of neurological disorders because the low blood brain barrier permeability hinders the classical pharmacological approach. Metal ion chelators combined with nanoparticles prove effective in the treatment of neurodegeneration and are under extensive studies. Most chelating agents and metallodrugs compete with endogenous molecules for metal coordination, and do not reach the active site. Determining the competition between metallodrugs and endogenous molecules requires knowing the stability constants of formed metal complexes. In this study, for the first time, potentiometric titrations are used to determine metal complex formation constants, and to quantify ligand content in functionalized materials. This new potentiometric approach allows physico–chemical characterization of mesoporous functionalized materials and their metal adsorption capacity in water solution. The potentiometric results are compared with isotherm models obtained by spectroscopic measurements and yield rewarding data fitting. The potentiometric method described here can be extended to different types of nanostructured materials carrying surface ionizable groups.
Original languageEnglish (US)
Pages (from-to)2000544
JournalAdvanced Materials Interfaces
DOIs
StatePublished - Jun 4 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: A.S. acknowledges financial support from FIR 2019 and MIUR (FFABR 2017).

Fingerprint

Dive into the research topics of 'Improving Metal Adsorption on Triethylenetetramine (TETA) Functionalized SBA-15 Mesoporous Silica Using Potentiometry, EPR and ssNMR'. Together they form a unique fingerprint.

Cite this