Abstract
Perovskite/silicon tandem solar cells are increasingly recognized as promising candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm−2. In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J–V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm2 monolithic tandem cell with a steady-state efficiency of 18%.
Original language | English (US) |
---|---|
Article number | 1701609 |
Journal | Advanced Energy Materials |
Volume | 8 |
Issue number | 6 |
DOIs | |
State | Published - Feb 26 2018 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors acknowledge Fabien Debrot and Christophe Allebé for SHJ wet chemical processing and Vincent Paratte for Raman spectroscopy measurement. This work was funded by the Nano-Tera.ch “Synergy” project, the Swiss Federal Office of Energy under Grant SI/501072-01, and the Swiss National Science Foundation via the NRP70 “Energy Turnaround” project “PV2050.” Figure 1 was replaced on February 26, 2018 after initial online publication.
Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- microcrystalline
- multijunction
- organic–inorganic perovskite
- silicon heterojunction
- tunnel junction
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)