Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring

Fouzi Harrou, Muddu Madakyaru, Ying Sun

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Fault detection has a vital role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. This paper proposes an innovative multivariate fault detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, to enhance further the robustness of these methods to measurement noise, and reduce the false alarms due to modeling errors, wavelet-based multiscale filtering of residuals is used before the application of the HD-based monitoring scheme. The performances of the developed NLPLS-HD fault detection technique is illustrated using simulated plug flow reactor data. The results show that the proposed method provides favorable performance for detection of faults compared to the conventional NLPLS method.
Original languageEnglish (US)
Pages (from-to)149-161
Number of pages13
JournalEnergy and Buildings
Volume143
DOIs
StatePublished - Mar 18 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2015-CRG4-2582
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-2582.

Fingerprint

Dive into the research topics of 'Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring'. Together they form a unique fingerprint.

Cite this