Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

Muhammad Mubashar Dogar

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.
Original languageEnglish (US)
Pages (from-to)1284
JournalCurrent Science
Volume114
Issue number06
DOIs
StatePublished - Mar 25 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: I thank Earth Science and Engineering Department, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia for providing computational facilities that were used to conduct model simulations. The observational and simulation results are available from the author upon request

Fingerprint

Dive into the research topics of 'Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM'. Together they form a unique fingerprint.

Cite this