TY - JOUR
T1 - Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells
AU - Torres Merino, Luis Victor
AU - Petoukhoff, Christopher E.
AU - Matiash, Oleksandr
AU - Subbiah, Anand Selvin
AU - Franco, Carolina Villamil
AU - Dally, Pia
AU - Vishal, Badri
AU - Kosar, Sofiia
AU - Rosas Villalva, Diego
AU - Hnapovskyi, Vladyslav
AU - Ugur, Esma
AU - Shah, Sahil
AU - Peña Camargo, Francisco
AU - Karalis, Orestis
AU - Hempel, Hannes
AU - Levine, Igal
AU - Pradhan, Rakesh R.
AU - Kralj, Suzana
AU - Kalasariya, Nikhil
AU - Babics, Maxime
AU - Yildirim, Bumin Kagan
AU - Said, Ahmed A.
AU - Aydin, Erkan
AU - Bristow, Helen
AU - Mannar, Subhashri
AU - Raja, Waseem
AU - Pininti, Anil Reddy
AU - Prasetio, Adi
AU - Razzaq, Arsalan
AU - Al Nasser, Hamza
AU - Allen, Thomas G.
AU - Isikgor, Furkan H.
AU - Baran, Derya
AU - Anthopoulos, Thomas D.
AU - Masis, Monica Morales
AU - Schwingenschlögl, Udo
AU - Unold, Thomas
AU - Stolterfoht, Martin
AU - Laquai, Frédéric
AU - De Wolf, Stefaan
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/9/18
Y1 - 2024/9/18
N2 - This work discusses the need to enhance charge carrier collection to minimize halide segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of valence band maximum (VBM) offsets and energetic barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on perovskite solar cell (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence's evolution and transient surface photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.
AB - This work discusses the need to enhance charge carrier collection to minimize halide segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of valence band maximum (VBM) offsets and energetic barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on perovskite solar cell (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence's evolution and transient surface photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.
KW - energy alignment
KW - halide segregation
KW - hole transport layer
KW - mixed SAMs
KW - perovskite
KW - photoluminescence evolution
KW - photostability
KW - self-assembled monolayer
KW - wide band gap
UR - http://www.scopus.com/inward/record.url?scp=85200340004&partnerID=8YFLogxK
U2 - 10.1016/j.joule.2024.06.017
DO - 10.1016/j.joule.2024.06.017
M3 - Article
AN - SCOPUS:85200340004
SN - 2542-4351
VL - 8
SP - 2585
EP - 2606
JO - Joule
JF - Joule
IS - 9
ER -