Abstract
The effect of lanthanoid (Ln = Nd, Sm, Ho) substitution on the structural and physical properties of the infinite-layer iron oxide SrFeO2 was investigated by X-ray diffraction (XRD) at ambient and high pressure, neutron diffraction, and 57Fe Mössbauer spectroscopy. Ln for Sr substituted samples up to ∼30% were synthesized by topochemical reduction using CaH2. While the introduction of the smaller Ln3+ ion reduces the a axis as expected, we found an unusual expansion of the c axis as well as the volume. Rietveld refinements along with pair distribution function analysis revealed the incorporation of oxygen atoms between FeO2 layers with a charge-compensated composition of (Sr1-xLnx)FeO2+x/2, which accounts for the failed electron doping to the FeO2 layer. The incorporated partial apical oxygen or the pyramidal coordination induces incoherent buckling of the FeO2 sheet, leading to a significant reduction of the Néel temperature. High-pressure XRD experiments for (Sr0.75Ho0.25)FeO2.125 suggest a possible stabilization of an intermediate spin state in comparison with SrFeO2, revealing a certain contribution of the in-plane Fe-O distance to the pressure-induced transition.
Original language | English (US) |
---|---|
Pages (from-to) | 12093-12099 |
Number of pages | 7 |
Journal | Inorganic Chemistry |
Volume | 55 |
Issue number | 22 |
DOIs | |
State | Published - Nov 21 2016 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2022-09-13ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Inorganic Chemistry