TY - JOUR
T1 - Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism
AU - Husain, Qayyum
AU - Ansari, Shakeel Ahmed
AU - Alam, Fahad
AU - Azam, Ameer
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-23
PY - 2011/1/1
Y1 - 2011/1/1
N2 - The present study demonstrates the immobilization of Aspergillus oryzae β galactosidase on native zinc oxide (ZnO) and zinc oxide nanoparticles (ZnO-NP) by simple adsorption mechanism. The binding of enzyme on ZnO-NP was confirmed by Fourier transform-infrared spectroscopy and atomic force microscopy. Native ZnO and ZnO-NP showed 60% and 85% immobilization yield, respectively. Soluble and immobilized enzyme preparations exhibited similar pH-optima at pH 4.5. ZnO-NP bound β galactosidase retained 73% activity at pH 7.0 while soluble and ZnO adsorbed enzyme lost 68% and 53% activity under similar experimental conditions, respectively. There was a marked broadening in temperature-activity profile for ZnO-NP adsorbed β galactosidase; it showed no difference in temperature-optima between 50 °C and 60 °C. Moreover, ZnO-NP adsorbed β galactosidase retained 53% activity after 1. h incubation with 5% galactose while the native ZnO- and soluble β galactosidase exhibited 35% and 28% activity under similar exposure, respectively. Native ZnO and ZnO-NP adsorbed β galactosidase retained 61% and 75% of the initial activity after seventh repeated use, respectively. It was noticed that 54%, 63% and 71% milk lactose was hydrolyzed by soluble, ZnO adsorbed and ZnO-NP adsorbed β galactosidase in batch process after 9. h while whey lactose was hydrolyzed to 61%, 68% and 81% under similar experimental conditions, respectively. In view of its easy production, improved stability against various denaturants and excellent reusability, ZnO-NP bound β galactosidase may find its applications in constructing enzyme-based analytical devices for clinical, environmental and food technology. © 2011 Elsevier B.V.
AB - The present study demonstrates the immobilization of Aspergillus oryzae β galactosidase on native zinc oxide (ZnO) and zinc oxide nanoparticles (ZnO-NP) by simple adsorption mechanism. The binding of enzyme on ZnO-NP was confirmed by Fourier transform-infrared spectroscopy and atomic force microscopy. Native ZnO and ZnO-NP showed 60% and 85% immobilization yield, respectively. Soluble and immobilized enzyme preparations exhibited similar pH-optima at pH 4.5. ZnO-NP bound β galactosidase retained 73% activity at pH 7.0 while soluble and ZnO adsorbed enzyme lost 68% and 53% activity under similar experimental conditions, respectively. There was a marked broadening in temperature-activity profile for ZnO-NP adsorbed β galactosidase; it showed no difference in temperature-optima between 50 °C and 60 °C. Moreover, ZnO-NP adsorbed β galactosidase retained 53% activity after 1. h incubation with 5% galactose while the native ZnO- and soluble β galactosidase exhibited 35% and 28% activity under similar exposure, respectively. Native ZnO and ZnO-NP adsorbed β galactosidase retained 61% and 75% of the initial activity after seventh repeated use, respectively. It was noticed that 54%, 63% and 71% milk lactose was hydrolyzed by soluble, ZnO adsorbed and ZnO-NP adsorbed β galactosidase in batch process after 9. h while whey lactose was hydrolyzed to 61%, 68% and 81% under similar experimental conditions, respectively. In view of its easy production, improved stability against various denaturants and excellent reusability, ZnO-NP bound β galactosidase may find its applications in constructing enzyme-based analytical devices for clinical, environmental and food technology. © 2011 Elsevier B.V.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0141813011001024
UR - http://www.scopus.com/inward/record.url?scp=79956080802&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2011.03.011
DO - 10.1016/j.ijbiomac.2011.03.011
M3 - Article
SN - 1879-0003
VL - 49
SP - 37
EP - 43
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
IS - 1
ER -