TY - JOUR
T1 - Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study
AU - Luong, Minh Bau
AU - Yu, Gwang Hyeon
AU - Chung, Suk Ho
AU - Yoo, Chun Sang
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/10/11
Y1 - 2016/10/11
N2 - The ignition characteristics of a lean primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated using 2-D direct numerical simulations (DNSs) with a 116-species reduced mechanism of PRF oxidation. For RCCI combustion, n-heptane and iso-octane are used as two different reactivity fuels and the corresponding global PRF number is PRF50 which is also used as a single fuel for SCCI combustion. The 2-D DNSs of RCCI/SCCI combustion are performed by varying degree of fuel stratification, r, and turbulence intensity, u', at different initial mean temperature, T , with negatively-correlated T-r fields. It is found that in the low- and intermediate-temperature regimes, the overall combustion of RCCI cases occurs earlier and its mean heat release rate (HRR) is more distributed over time than those of the corresponding SCCI cases. This is because PRF number stratification, PRF', plays a dominant role and T' has a negligible effect on the overall combustion within the negative temperature coefficient (NTC) regime. In the high-temperature regime, however, the difference between RCCI and SCCI combustion becomes marginal because the ignition of the PRF/air mixture is highly-sensitive to T' rather than PRF' and ϕ(symbol)'. The Damköhler number analysis verifies that the mean HRR is more distributed over time with increasing r because the portion of deflagration mode of combustion becomes larger with increasing fuel stratification. Finally, it is found that the overall combustion of both RCCI and SCCI cases becomes more like the 0-D ignition with increasing u' due to the homogenization of initial mixture by turbulent mixing.
AB - The ignition characteristics of a lean primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated using 2-D direct numerical simulations (DNSs) with a 116-species reduced mechanism of PRF oxidation. For RCCI combustion, n-heptane and iso-octane are used as two different reactivity fuels and the corresponding global PRF number is PRF50 which is also used as a single fuel for SCCI combustion. The 2-D DNSs of RCCI/SCCI combustion are performed by varying degree of fuel stratification, r, and turbulence intensity, u', at different initial mean temperature, T , with negatively-correlated T-r fields. It is found that in the low- and intermediate-temperature regimes, the overall combustion of RCCI cases occurs earlier and its mean heat release rate (HRR) is more distributed over time than those of the corresponding SCCI cases. This is because PRF number stratification, PRF', plays a dominant role and T' has a negligible effect on the overall combustion within the negative temperature coefficient (NTC) regime. In the high-temperature regime, however, the difference between RCCI and SCCI combustion becomes marginal because the ignition of the PRF/air mixture is highly-sensitive to T' rather than PRF' and ϕ(symbol)'. The Damköhler number analysis verifies that the mean HRR is more distributed over time with increasing r because the portion of deflagration mode of combustion becomes larger with increasing fuel stratification. Finally, it is found that the overall combustion of both RCCI and SCCI cases becomes more like the 0-D ignition with increasing u' due to the homogenization of initial mixture by turbulent mixing.
UR - http://hdl.handle.net/10754/622300
UR - https://linkinghub.elsevier.com/retrieve/pii/S1540748916304278
UR - http://www.scopus.com/inward/record.url?scp=84992343465&partnerID=8YFLogxK
U2 - 10.1016/j.proci.2016.08.038
DO - 10.1016/j.proci.2016.08.038
M3 - Article
SN - 1540-7489
VL - 36
SP - 3623
EP - 3631
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
IS - 3
ER -