IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains

Joakim Beck, Lorenzo Tamellini, Raul Tempone

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straightforward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.
Original languageEnglish (US)
Pages (from-to)330-350
Number of pages21
JournalComputer Methods in Applied Mechanics and Engineering
Volume351
DOIs
StatePublished - Mar 28 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): URF/1/2281-01-01, URF/1/2584-01-01
Acknowledgements: The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme “Uncertainty quantification for complex systems: theory and methodologies” supported by EPSRC, UK Grant No. EP/K032208/1, where work on this paper was undertaken. Part of this research was carried out while the authors visited the Banff International Research Station for Mathematical Innovation and Discovery (BIRS), for the workshop “Computational Uncertainty Quantification” in October 2017 (https://www.birs.ca/events/2017/5-day-workshops/17w5072) organized by Serge Prudhomme, Roger Ghanem, Mohammad Motamed, and Raúl Tempone. The hospitality and support of BIRS is acknowledged with gratitude. This work was supported by the KAUST, Saudi Arabia Office of Sponsored Research (OSR) under award numbers URF/1/2281-01-01 and URF/1/2584-01-01 in the KAUST Competitive Research Grants Program-Rounds 3 and 4, respectively. Lorenzo Tamellini also received support from the European Union's Horizon 2020 research and innovation program through the Grant No. 680448 “CAxMan”, and by the GNCS 2018 project “Metodi non conformi per equazioni alle derivate parziali”.

Fingerprint

Dive into the research topics of 'IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains'. Together they form a unique fingerprint.

Cite this