Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

Amandine Cadiau, Youssef Belmabkhout, Karim Adil, Prashant Bhatt, Renjith S. Pillai, Aleksander Shkurenko, Charlotte Martineau-Corcos, Guillaume Maurin, Mohamed Eddaoudi

Research output: Contribution to journalArticlepeer-review

226 Scopus citations


Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.
Original languageEnglish (US)
Pages (from-to)731-735
Number of pages5
Issue number6339
StatePublished - May 18 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CCF/1/1972-02-01, CCF/1/1972-8-01, OSR-2017-CPF-3325
Acknowledgements: Research reported in this publication was solely performed at KAUST and was supported by KAUST funds, KAUST funding grants (CCF/1/1972-02-01, CCF/1/1972-8-01, and OSR-2017-CPF-3325), and Aramco. The data reported in the paper are presented in the main text and the supplementary materials. Crystal structures of the as-synthesized AlFFIVE-1-Ni, the dehydrated AlFFIVE-1-Ni, AlFFIVE-1-Ni (rehydrated), AlFFIVE-1-Ni·1.48H2O·0.26CO2, and FeFFIVE-1-Ni are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) under reference nos. CCDC 1538217, 1538215, 1538216, 1538219, and 1538218. A.C., Y.B., K.A., P.M.B., M.E., and KAUST have filed provisional patents (WO2016/162834A1 and WO2016/162835A1) pertaining to the results presented herein. K.A., M.E., and A.C. conceptualized the design and the construction of the reported MOF materials; A.C. carried out the materials synthesis; K.A., A.C., and A.S. conducted and interpreted the crystallographic experiments; P.M.B., Y.B., and A.C. conducted and interpreted low-pressure adsorption experiments; Y.B. and P.M.B. contributed to conceptualizing, designing, conducting, and interpreting calorimetric and mixed adsorption experiments; R.S.P. and G.M. performed andanalyzed the DFT calculations; C.M.-C. conducted and analyzed the solid-state NMR experiments; and K.A., Y.B., A.C., and M.E. wrote the manuscript.


Dive into the research topics of 'Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration'. Together they form a unique fingerprint.

Cite this