Abstract
Hydrogen can be produced by bacterial fermentation of sugars, but substrate conversion to hydrogen is incomplete. Using a single-chamber microbial electrolysis cell (MEC), we show that additional hydrogen can be produced from the effluent of an ethanol-type dark-fermentation reactor. An overall hydrogen recovery of 83 ± 4% was obtained using a buffered effluent (pH 6.7-7.0), with a hydrogen production rate of 1.41 ± 0.08 m3 H2/m3 reactor/d, at an applied voltage of Eap = 0.6 V. When the MEC was combined with the fermentation system, the overall hydrogen recovery was 96%, with a production rate of 2.11 m3 H2/m3/d, corresponding to an electrical energy efficiency of 287%. High cathodic hydrogen recoveries (70 ± 5% to 94 ± 4%) were obtained at applied voltages of 0.5-0.8 V due to shorter cycle times, and repression of methanogen growth through exposure of the cathode to air after each cycle. Addition of a buffer to the fermentation effluent was critical to MEC performance as there was little hydrogen production using unbuffered effluent (0.0372 m3 H2/m3/d at Eap = 0.6 V, pH 4.5-4.6). These results demonstrate that hydrogen yields from fermentation can be substantially increased by using MECs. © 2009 Elsevier B.V. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 3055-3060 |
Number of pages | 6 |
Journal | Biosensors and Bioelectronics |
Volume | 24 |
Issue number | 10 |
DOIs | |
State | Published - Jun 2009 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This research was supported by the National Natural Science Foundation of China (No. 30870037), National Renewable Energy Laboratory contract RFH-7-77623-01, the Paul L. Bush award administered by the Water Environment Research Foundation, and the KAUST Global Research Partnership.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.