Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations

Holden W. H. Lai, Francesco M. Benedetti, Jun Myun Ahn, Ashley M. Robinson, Yingge Wang, Ingo Pinnau, Zachary P. Smith, Yan Xia

Research output: Contribution to journalArticlepeer-review

87 Scopus citations


Membranes have the potential to substantially reduce energy consumption of industrial chemical separations, but their implementation has been limited owing to a performance upper bound—the trade-off between permeability and selectivity. Although recent developments of highly permeable polymer membranes have advanced the upper bounds for various gas pairs, these polymers typically exhibit limited selectivity. We report a class of hydrocarbon ladder polymers that can achieve both high selectivity and high permeability in membrane separations for many industrially relevant gas mixtures. Additionally, their corresponding films exhibit desirable mechanical and thermal properties. Tuning of the ladder polymer backbone configuration was found to have a profound effect on separation performance and aging behavior.
Original languageEnglish (US)
Pages (from-to)1390-1392
Number of pages3
Issue number6587
StatePublished - Mar 25 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-04-21
Acknowledged KAUST grant number(s): BAS/1/1323-01-01
Acknowledgements: Funding: Y.X. acknowledges the Stanford Natural Gas Initiative for seed funding and the Sloan Research Foundation for a Sloan Research Fellowship. Z.P.S. and F.M.B. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Separation Science program (DE-SC0019087). H.W.H.L. was supported by NSF-GRFP (DGE-156518). This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation under award DMR-1419807. I.P. was supported by KAUST baseline funding (BAS/1/1323-01-01).

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations'. Together they form a unique fingerprint.

Cite this