Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods

Johann Bouclé, Sabina Chyla, Milo S.P. Shaffer, James R. Durrant, Donal D.C. Bradley, Jenny Nelson

Research output: Contribution to journalArticlepeer-review

156 Scopus citations

Abstract

Hybrid bulk heterojunction solar cells based on nanocrystalline TiO 2 (nc-TiO2) nanorods capped with trioctylphosphine oxide (TOPO) and regioregular poly(3-hexylthiophene) (P3HT) are processed from solution and characterized in order to relate the device function (optical absorption, charge separation, and transport and photovoltaic properties) to active-layer properties and device parameters. Annealing the blend films is found to greatly improve the polymer-metal oxide interaction at the nc-TiO 2/P3HT interface, resulting in a six-fold increase of the charge separation yield and improved photovoltaic device performance under simulated solar illumination. In addition, the influence of the organic ligand at the nc-TiO2 particle surface is found to be crucial for charge separation. Ligand-exchange procedures applied on the TOPO-capped nc-TiO 2 nanorods with an amphiphilic ruthenium-based dye are found to further improve the charge-separation yield at the polymer-nanocrystal interface. However, the poor photocurrents generated in the hybrid blend devices, before and after ligand exchange, suggest that transport within or between nanoparticles limits performance. By comparison with other donor-acceptor bulk heterojunction systems, we conclude that charge transport in the nc-TiO2:P3HT blend films is limited by the presence of an intrinsic trap distribution mainly associated with the nc-TiO2 particles. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
Original languageEnglish (US)
JournalAdvanced Functional Materials
Volume18
Issue number4
DOIs
StatePublished - Feb 22 2008
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2019-11-27

Fingerprint

Dive into the research topics of 'Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods'. Together they form a unique fingerprint.

Cite this