Abstract
Twelve amino acid sequences of kringle-forming polypeptides were compiled from the known sequences of urokinase A-chain (human), a tissue-type plasminogen activator (human), prothrombin (human and bovine), and plasminogen (human). Their sequence homologies with maximum match were examined by a computer program. A homology alignment and graphic matrix analyses did show that they had a great degree of homology. All the cystein residues responsible for the kringle structures of urokinase and the tissue-type plasminogen activator were confidently preserved as well as other proteins. A phylogenetic tree was then reconstructed, and the A- and S-chain of bovine and human prothrombins were accounted for the measurement of the evolutionary time span. It was found that urokinase had a larger time span, as much as 60 million years (MY), than the tissue-type plasminogen activator. A common ancestral element of the kringle-related serine proteases was placed at around 500 MY ago, as old as the diversion of the α- and β-chains of hemoglobin. Thus, the kringle-families have undergone a substantial evolutionary divergence. Moreover, they can be subgrouped into three subfamilies: plasminogen activators, plasminogen, and prothrombin A-chains, the last being the most distantly diverged prothrombin S-chains.
Original language | English (US) |
---|---|
Pages (from-to) | 209-218 |
Number of pages | 10 |
Journal | Cell Structure and Function |
Volume | 10 |
Issue number | 3 |
DOIs | |
State | Published - 1985 |
Externally published | Yes |
ASJC Scopus subject areas
- Physiology
- Molecular Biology
- Cell Biology