Abstract
We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.
Original language | English (US) |
---|---|
Pages (from-to) | 632-668 |
Number of pages | 37 |
Journal | Journal of Mathematical Analysis and Applications |
Volume | 420 |
Issue number | 1 |
DOIs | |
State | Published - May 14 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Y. Gorb and F. Mans were supported by the National Science Foundation grant DMS-1016531; Y. Gorb was also supported by the National Science Foundation grant DMS-1350248. B. Vernescu was supported by the National Science Foundation grant DMS-1109356.
ASJC Scopus subject areas
- Analysis
- Applied Mathematics