Highly UV Resistant Inch-Scale Hybrid Perovskite Quantum Dot Papers

Ting-You Li, Xuezhu Xu, Chun-Ho Lin, Xinwei Guan, Wei-Hao Hsu, Meng-Lin Tsai, Xiaosheng Fang, Tom Wu, Jr-Hau He

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Halide perovskite quantum dots (PQDs) are promising materials for diverse applications including displays, light-emitting diodes, and solar cells due to their intriguing properties such as tunable bandgap, high photoluminescence quantum yield, high absorbance, and narrow emission peaks. Despite the prosperous achievements over the past several years, PQDs face severe challenges in terms of stability under different circumstances. Currently, researchers have overcome part of the stability problem, making PQDs sustainable in water, oxygen, and polar solvents for long-term use. However, halide PQDs are easily degraded under continuous irradiation, which significantly limits their potential for conventional applications. In this study, an oleic acid/oleylamine (traditional surface ligands)-free method to fabricate perovskite quantum dot papers (PQDP) is developed by adding cellulose nanocrystals as long-chain binding ligands that stabilize the PQD structure. As a result, the relative photoluminescence intensity of PQDP remains over ≈90% under continuous ultraviolet (UV, 16 W) irradiation for 2 months, showing negligible photodegradation. This proposed method paves the way for the fabrication of ultrastable PQDs and the future development of related applications.
Original languageEnglish (US)
Pages (from-to)1902439
JournalAdvanced Science
DOIs
StatePublished - Jul 24 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: T.-Y.L., X.X., and C.-H.L. contributed equally to this work. This publication was financially supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (OSR-2016-CRG5-3005), KAUST baseline funding, Australian Research Council (ARC) (DP190103316), and the startup funding of City University of Hong Kong.

Fingerprint

Dive into the research topics of 'Highly UV Resistant Inch-Scale Hybrid Perovskite Quantum Dot Papers'. Together they form a unique fingerprint.

Cite this