Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape

Fred D. Mast, Peter C. Fridy, Natalia E. Ketaren, Junjie Wang, Erica Y. Jacobs, Jean Paul Olivier, Tanmoy Sanyal, Kelly R. Molloy, Fabian Schmidt, Magdalena Rutkowska, Yiska Weisblum, Lucille M. Rich, Elizabeth R. Vanderwall, Nicholas Dambrauskas, Vladimir Vigdorovich, Sarah Keegan, Jacob B. Jiler, Milana E. Stein, Paul Dominic B. Olinares, Louis HerlandsTheodora Hatziioannou, D. Noah Sather, Jason S. Debley, David Fenyö, Andrej Sali, Paul D. Bieniasz, John D. Aitchison, Brian T. Chait, Michael P. Rout

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophy-lactic strategies.
Original languageEnglish (US)
StatePublished - Dec 1 2021
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Medicine
  • General Immunology and Microbiology
  • General Neuroscience


Dive into the research topics of 'Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape'. Together they form a unique fingerprint.

Cite this