Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

Jie Zhu, Yihan Zhu, Liangkui Zhu, Marcello S. Rigutto, Alexander W. Van Der Made, Chengguang Yang, Shuxiang Pan, Liang Wang, Longfeng Zhu, Yinying Jin, Qi Sun, Qinming Wu, Xiangju Meng, Daliang Zhang, Yu Han, Jixue Li, Yueying Chu, Anmin Zheng, Shilun Qiu, Xiaoming ZhengFengshou Xiao

Research output: Contribution to journalArticlepeer-review

268 Scopus citations


Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)2503-2510
Number of pages8
JournalJournal of the American Chemical Society
Issue number6
StatePublished - Feb 4 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was supported by the National Natural Science Foundation of China (Grants 11227403, 21201076, 91022030, 21333009), Fundamental Research Funds for the Central Universities (2013XZZX001), Shell Company, and the Competitive Research Grant to Y.H. from King Abdullah University of Science and Technology. Y.H.Z. is supported by the Sabic Post-doc Fellowship.

ASJC Scopus subject areas

  • Biochemistry
  • Colloid and Surface Chemistry
  • General Chemistry
  • Catalysis


Dive into the research topics of 'Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template'. Together they form a unique fingerprint.

Cite this