Abstract
The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.
Original language | English (US) |
---|---|
Pages (from-to) | 1712-1716 |
Number of pages | 5 |
Journal | Synlett |
Volume | 2010 |
Issue number | 11 |
DOIs | |
State | Published - Jun 14 2010 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-11- 006-02
Acknowledgements: This publication is based on work supported by Award No. KUS-11- 006-02, made by King Abdullah University of Science and Technology (KAUST). Additionally, the authors wish to thank NIH-NIGMS (R01 GM 080269-01), Abbott Laboratories, Amgen, the Gordon and Betty Moore Foundation, and Caltech for financial support.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.