Abstract
Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, nrel, it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in nrel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO2, the effective reduction of the Tg was estimated to be ∼200 °C going from 128 to 7 nm films.
Original language | English (US) |
---|---|
Pages (from-to) | 11369-11376 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 10 |
Issue number | 13 |
DOIs | |
State | Published - Apr 4 2018 |
Bibliographical note
Publisher Copyright:© 2018 American Chemical Society.
Keywords
- gas separations
- gas sorption
- high-pressure sorption
- in situ ellipsometry
- nanoconfinement
- polymers of intrinsic microporosity
ASJC Scopus subject areas
- General Materials Science