Abstract
Silicon's sensitivity to corrosion has hindered its use in photoanode applications. We found that deposition of a ∼2-nanometer nickel film on n-type silicon (n-Si) with its native oxide affords a high-performance metal-insulator-semiconductor photoanode for photoelectrochemical (PEC) water oxidation in both aqueous potassium hydroxide (KOH, pH = 14) and aqueous borate buffer (pH = 9.5) solutions. The Ni film acted as a surface protection layer against corrosion and as a nonprecious metal electrocatalyst for oxygen evolution. In 1 M aqueous KOH, the Ni/n-Si photoanodes exhibited high PEC activity with a low onset potential (∼1.07 volts versus reversible hydrogen electrode), high photocurrent density, and durability. The electrode showed no sign of decay after ∼80 hours of continuous PEC water oxidation in a mixed lithium borate-potassium borate electrolyte. The high photovoltage was attributed to a high built-in potential in a metal-insulator-semiconductor-like device with an ultrathin, incomplete screening Ni/NiOx layer from the electrolyte.
Original language | English (US) |
---|---|
Pages (from-to) | 836-840 |
Number of pages | 5 |
Journal | Science |
Volume | 342 |
Issue number | 6160 |
DOIs | |
State | Published - Jan 1 2013 |
Externally published | Yes |