Abstract
An intrinsically microporous polymer with hydroxyl functionalities, PIM-6FDA-OH, was used as a precursor for various types of carbon molecular sieve (CMS) membranes for ethylene/ethane separation. The pristine polyimide films were heated under controlled N2 atmosphere at different stages from 500 to 800 °C. All CMS samples carbonized above 600 °C surpassed the polymeric ethylene/ethane upper bound. Pure-gas selectivity reached 17.5 for the CMS carbonized at 800 °C with an ethylene permeability of about 10 Barrer at 2 bar and 35 °C, becoming the most selective CMS for ethylene/ethane separation reported to date. As expected, gravimetric sorption experiments showed that all CMS membranes had ethylene/ethane solubility selectivities close to one. The permselectivity increased with increasing pyrolysis temperature due to densification of the micropores in the CMS membranes, leading to enhanced diffusivity selectivity. Mixed-gas tests with a binary 50:50 v/v ethylene/ethane feed showed a decrease in selectivity from 14 to 8.3 as the total feed pressure was increased from 4 to 20 bar. The selectivity drop under mixed-gas conditions was attributed to non-ideal effects: (i) Competitive sorption that reduced the permeability of ethylene and (ii) dilation of the CMS that resulted in an increase in the ethane permeability.
Original language | English (US) |
---|---|
Pages (from-to) | 115-123 |
Number of pages | 9 |
Journal | Journal of Membrane Science |
Volume | 500 |
DOIs | |
State | Published - Nov 18 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01ASJC Scopus subject areas
- Biochemistry
- Filtration and Separation
- General Materials Science
- Physical and Theoretical Chemistry