Abstract
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO 4 demonstrates a high reversible capacity exceeding 300â €...mAh·g â ̂'1 at a voltage of approximately 2.4â €...V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO 4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO 4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.
Original language | English (US) |
---|---|
Journal | Scientific Reports |
Volume | 4 |
DOIs | |
State | Published - Jul 11 2014 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2022-09-13ASJC Scopus subject areas
- General