Abstract
Research into the capability of recursive self-improvement typically only considers pairs of 〈agent, self-modification candidate〉, and asks whether the agent can determine/prove if the self-modification is beneficial and safe. But this leaves out the much more important question of how to come up with a potential self-modification in the first place, as well as how to build an AI system capable of evaluating one. Here we introduce a novel class of AI systems, called experience-based AI (EXPAI), which trivializes the search for beneficial and safe self-modifications. Instead of distracting us with proof-theoretical issues, EXPAI systems force us to consider their education in order to control a system’s growth towards a robust and trustworthy, benevolent and well-behaved agent. We discuss what a practical instance of EXPAI looks like and build towards a “test theory” that allows us to gauge an agent’s level of understanding of educational material.
Original language | English (US) |
---|---|
Title of host publication | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Publisher | Springer [email protected] |
Pages | 129-139 |
Number of pages | 11 |
ISBN (Print) | 9783319416489 |
DOIs | |
State | Published - Jan 1 2016 |
Externally published | Yes |