Green Synthesis of Lactone-Based Conjugated Polymers for n-Type Organic Electrochemical Transistors

Yazhou Wang, Erica Zeglio, Lewen Wang, Shengyu Cong, Genming Zhu, Hailiang Liao, Jiayao Duan, Yecheng Zhou, Zhengke Li, Damia Mawad, Anna Herland, Wan Yue, Iain McCulloch

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


As new and better materials are implemented for organic electrochemical transistors (OECTs), it becomes increasingly important to adopt more economic and environmentally friendly synthesis pathways with respect to conventional transition-metal-catalyzed polymerizations. Herein, a series of novel n-type donor–acceptor-conjugated polymers based on glycolated lactone and bis-isatin units are reported. All the polymers are synthesized via green and metal-free aldol polymerization. The strong electron-deficient lactone-building blocks provide low-lying lowest unoccupied molecular orbital (LUMO) and the rigid backbone needed for efficient electron mobility up to 0.07 cm2 V−1 s−1. Instead, polar atoms in the backbone and ethylene glycol side chains contribute to the ionic conductivity. The resulting OECTs exhibit a normalized maximum transconductance gm,norm of 0.8 S cm−1 and a μC* of 6.7 F cm−1 V−1 s−1. Data on the microstructure show that such device performance originates from a unique porous morphology together with a highly disordered amorphous microstructure, leading to efficient ion-to-electron coupling. Overall, the design strategy provides an inexpensive and metal-free polymerization route for high-performing n-type OECTs.
Original languageEnglish (US)
JournalAdvanced Functional Materials
Issue number16
StatePublished - Apr 1 2022
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-21

ASJC Scopus subject areas

  • General Chemical Engineering
  • Electronic, Optical and Magnetic Materials


Dive into the research topics of 'Green Synthesis of Lactone-Based Conjugated Polymers for n-Type Organic Electrochemical Transistors'. Together they form a unique fingerprint.

Cite this