Graphitic carbon nitride nano sheets functionalized with selected transition metal dopants: An efficient way to store CO2

T. Hussain*, H. Vovusha, T. Kaewmaraya, A. Karton, V. Amornkitbamrung, R. Ahuja

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Proficient capture of carbon dioxide (CO2) is considered to be a backbone for environment protection through countering the climate change caused by mounting carbon content. Here we present a comprehensive mechanism to design novel functional nanostructures capable of capturing a large amount of CO2 efficiently. By means of van der Waals corrected density functional theory calculations, we have studied the structural, electronic and CO2 storage properties of carbon nitride (g-C6N8) nano sheets functionalized with a range of transition metal (TM) dopants ranging from Sc to Zn. The considered TMs bind strongly to the nano sheets with binding energies exceeding their respective cohesive energies, thus abolishing the possibility of metal cluster formation. Uniformly dispersed TMs change the electronic properties of semiconducting g-C6N8 through the transfer of valence charges from the former to the latter. This leaves all the TM dopants with significant positive charges, which are beneficial for CO2 adsorption. We have found that each TM's dopants anchor a maximum of four CO2 molecules with suitable adsorption energies (-0.15 to -1.0 eV) for ambient condition applications. Thus g-C6N8 nano sheets functionalized with selected TMs could serve as an ideal sorbent for CO2 capture.

Original languageEnglish (US)
Article number415502
JournalNanotechnology
Volume29
Issue number41
DOIs
StatePublished - Aug 6 2018

Bibliographical note

Funding Information:
T H is indebted to the resources at NCI National Facility systems at the Australian National University through National Computational Merit Allocation Scheme supported by the Australian Government and the University of Queensland Research Computing Centre. R A acknowledges the Swedish Research Council (VR), Carl Tryggers Stiftelse för Vetenskaplig Forskning and StandUp for financial support. The SNIC and UPPMAX are also acknowledged for provided computing time. T K would like to acknowledge the Development and Promotion of Science and Technology Talent Project (DPST) for the financial support of this project. The Nanotechnology Centre (NANOTEC), NSTDA Ministry of Science and Technology (Thailand) also supports T K through its program of Centre of Excellence Network, Integrated Nanotechnology Research Centre Khon Kaen University (Thailand).

Publisher Copyright:
© 2018 IOP Publishing Ltd.

Keywords

  • adsorption
  • charge analysis
  • dopants
  • functionalization
  • nanostructure

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Graphitic carbon nitride nano sheets functionalized with selected transition metal dopants: An efficient way to store CO2'. Together they form a unique fingerprint.

Cite this