GRAPH-BASED NEAREST NEIGHBOR SEARCH IN HYPERBOLIC SPACES

Liudmila Prokhorenkova, Dmitry Baranchuk, Nikolay Bogachev, Yury Demidovich, Alexander Kolpakov

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

The nearest neighbor search (NNS) problem is widely studied in Euclidean space, and graph-based algorithms are known to outperform other approaches for this task. However, hyperbolic geometry often allows for better data representation in various domains, including graphs, words, and images. In this paper, we show that graph-based approaches are also well suited for hyperbolic geometry. From a theoretical perspective, we rigorously analyze the time and space complexity of graph-based NNS, assuming that an n-element dataset is uniformly distributed within a d-dimensional ball of radius R in the hyperbolic space of curvature -1. Under some conditions on R and d, we derive the time and space complexity of graph-based NNS and compare the obtained results with known guarantees for the Euclidean case. Interestingly, in the dense setting (d ≪ log n) and under some assumptions on the radius R, graph-based NNS has lower time complexity in the hyperbolic space. This agrees with our experiments: we consider datasets embedded in hyperbolic and Euclidean spaces and show that graph-based NNS can be more efficient in the hyperbolic space. We also demonstrate that graph-based methods outperform other existing baselines for hyperbolic NNS. Overall, our theoretical and empirical analysis suggests that graph-based NNS can be considered a default approach for similarity search in hyperbolic spaces.

Original languageEnglish (US)
StatePublished - 2022
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: Apr 25 2022Apr 29 2022

Conference

Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online
Period04/25/2204/29/22

Bibliographical note

Funding Information:
A part of work of Nikolay Bogachev was done during his postdoc at Skoltech.

Publisher Copyright:
© 2022 ICLR 2022 - 10th International Conference on Learning Representationss. All rights reserved.

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'GRAPH-BASED NEAREST NEIGHBOR SEARCH IN HYPERBOLIC SPACES'. Together they form a unique fingerprint.

Cite this