Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation

Haiding Sun*, Davide Priante, Jung Wook Min, Ram Chandra Subedi, Mohammad Khaled Shakfa, Zhongjie Ren, Kuang Hui Li, Ronghui Lin, Chao Zhao, Tien Khee Ng, Jae Hyun Ryou, Xixiang Zhang, Boon S. Ooi, Xiaohang Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

High-density dislocations in materials and poor electrical conductivity of p-type AlGaN layers constrain the performance of the ultraviolet light emitting diodes and lasers at shorter wavelengths. To address those technical challenges, we design, grow, and fabricate a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode. Calculated electronic band diagram and carrier concentrations show an automatic formation of a p-n junction with electron and hole concentrations of ∼1018 /cm3 in the graded AlGaN layers without intentional doping. The transmission electron microscopy experiment confirms the composition variation in the axial direction of the graded AlGaN nanowires. Significantly lower turn-on voltage of 6.5 V (reduced by 2.5 V) and smaller series resistance of 16.7 ω (reduced by nearly four times) are achieved in the GRINSCH diode, compared with the conventional p-i-n diode. Such an improvement in the electrical performance is mainly attributed to the effectiveness of polarization-induced n- and p-doping in the compositionally graded AlGaN layers. In consequence, the carrier transport and injection efficiency of the GRINSCH diode are greatly enhanced, which leads to a lower turn-on voltage, smaller series resistance, higher output power, and enhanced device efficiency. The calculated carrier distributions (both electrons and holes) across the active region show better carrier confinement in the GRINSCH diode. Thus, together with the large optical confinement, the GRINSCH diode could offer an unconventional path for the development of solid-state ultraviolet optoelectronic devices, mainly laser diodes of the future.

Original languageEnglish (US)
Pages (from-to)3305-3314
Number of pages10
JournalACS PHOTONICS
Volume5
Issue number8
DOIs
StatePublished - Aug 15 2018

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

Keywords

  • aluminum gallium nitride nanowire
  • graded index
  • polarization doping
  • ultraviolet laser

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering
  • Biotechnology

Fingerprint

Dive into the research topics of 'Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation'. Together they form a unique fingerprint.

Cite this