Abstract
Goal-conditioned Reinforcement Learning (RL) aims at learning optimal policies, given goals encoded in special command inputs. Here we study goal-conditioned neural nets (NNs) that learn to generate deep NN policies in form of context-specific weight matrices, similar to Fast Weight Programmers and other methods from the 1990s. Using context commands of the form ``generate a policy that achieves a desired expected return,'' our NN generators combine powerful exploration of parameter space with generalization across commands to iteratively find better and better policies. A form of weight-sharing HyperNetworks and policy embeddings scales our method to generate deep NNs. Experiments show how a single learned policy generator can produce policies that achieve any return seen during training. Finally, we evaluate our algorithm on a set of continuous control tasks where it exhibits competitive performance.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the AAAI Conference on Artificial Intelligence |
Publisher | Association for the Advancement of Artificial Intelligence (AAAI) |
Pages | 7503-7511 |
Number of pages | 9 |
DOIs | |
State | Published - Jun 26 2023 |
Bibliographical note
KAUST Repository Item: Exported on 2023-09-08Acknowledgements: We thank Mirek Strupl, Dylan Ashley, Robert Csord ´ as, Alek- ´ sandar Stanic and Anand Gopalakrishnan for their feed- ´ back. This work was supported by the ERC Advanced Grant (no: 742870), the Swiss National Science Foundation grant (200021 192356), and by the Swiss National Supercomputing Centre (CSCS, projects: s1090, s1154). We also thank NVIDIA Corporation for donating a DGX-1 as part of the Pioneers of AI Research Award and to IBM for donating a Minsky machine.