TY - JOUR
T1 - Glycidol hydrogenolysis on a cheap mesoporous acid saponite supported Ni catalyst as alternative approach to 1,3-propanediol synthesis
AU - Gebretsadik, F. B.
AU - Ruiz-Martinez, J.
AU - Salagre, P.
AU - Cesteros, Y.
N1 - Generated from Scopus record by KAUST IRTS on 2019-08-08
PY - 2017/1/1
Y1 - 2017/1/1
N2 - This study explores the use of glycidol, as alternative to glycerol, to improve the selectively to 1,3-propanediol (PrD) by hydrogenolysis. The reaction was performed using Ni (with different Ni wt%) supported on an acid delaminated saponite catalysts which are cheaper compared to the expensive catalysts needed to favor the 1,3-PrD formation by glycerol hydrogenolysis. An increase in metallic area and a decrease in the catalyst acidity resulted in higher conversion and selectivity to propanediols (1,2- + 1,3-PrD). An acid activation of glycidol during hydrogenolysis promoted the 1,3-PrD formation and increased the 1,3-PrD/1,2-PrD ratio. For the catalyst prepared with 40 wt% Ni loading, an increase in the reaction temperature to 423 and 453 K led to higher 1,3-PrD/1,2-PrD ratio. The highest 1,3-PrD yield (29%) and 1,3-PrD/1,2-PrD ratio (0.97) at total conversion were obtained at 453 K, after 1 h. The overall 1,3-PrD yield from glycerol, assuming a two-step synthesis (Glycerol → Glycidol → 1,3-PrD) and a yield of 78% for the first step, should be around 23%. This value is comparable to that reported for the hydrogenolysis of glycerol using noble metal catalysts.
AB - This study explores the use of glycidol, as alternative to glycerol, to improve the selectively to 1,3-propanediol (PrD) by hydrogenolysis. The reaction was performed using Ni (with different Ni wt%) supported on an acid delaminated saponite catalysts which are cheaper compared to the expensive catalysts needed to favor the 1,3-PrD formation by glycerol hydrogenolysis. An increase in metallic area and a decrease in the catalyst acidity resulted in higher conversion and selectivity to propanediols (1,2- + 1,3-PrD). An acid activation of glycidol during hydrogenolysis promoted the 1,3-PrD formation and increased the 1,3-PrD/1,2-PrD ratio. For the catalyst prepared with 40 wt% Ni loading, an increase in the reaction temperature to 423 and 453 K led to higher 1,3-PrD/1,2-PrD ratio. The highest 1,3-PrD yield (29%) and 1,3-PrD/1,2-PrD ratio (0.97) at total conversion were obtained at 453 K, after 1 h. The overall 1,3-PrD yield from glycerol, assuming a two-step synthesis (Glycerol → Glycidol → 1,3-PrD) and a yield of 78% for the first step, should be around 23%. This value is comparable to that reported for the hydrogenolysis of glycerol using noble metal catalysts.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0926860X17301175
U2 - 10.1016/j.apcata.2017.03.018
DO - 10.1016/j.apcata.2017.03.018
M3 - Article
SN - 0926-860X
VL - 538
JO - Applied Catalysis A: General
JF - Applied Catalysis A: General
ER -