Abstract
The global linear stability of a three-dimensional compressible flow around a yawed parabolic body of infinite span is investigated using an iterative eigenvalue method in conjunction with direct numerical simulations. The computed global spectrum shows an unstable branch consisting of three-dimensional boundary layer modes whose amplitude distributions exhibit typical characteristics of both attachment-line and crossflow modes. In particular, global eigenfunctions with smaller phase velocities display a more pronounced structure near the stagnation line, reminiscent of attachment-line modes while still featuring strong crossflow vortices further downstream. This analysis establishes a link between the two prevailing instability mechanisms on a swept parabolic body which, so far, have only been studied separately and locally. A parameter study shows maximum modal growth for a spanwise wavenumber of β = 0.213, suggesting a preferred disturbance length scale in the sweep direction. © 2008 Cambridge University Press.
Original language | English (US) |
---|---|
Pages (from-to) | 205-214 |
Number of pages | 10 |
Journal | Journal of Fluid Mechanics |
Volume | 611 |
DOIs | |
State | Published - Jan 1 2008 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2022-09-13ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Condensed Matter Physics