Abstract
The strong optical chirality arising from certain synthetic metamaterials has important and widespread applications in polarization optics, stereochemistry and spintronics. However, these intrinsically chiral metamaterials are restricted to a complicated three-dimensional (3D) geometry, which leads to significant fabrication challenges, particularly at visible wavelengths. Their planar two-dimensional (2D) counterparts are limited by symmetry considerations to operation at oblique angles (extrinsic chirality) and possess significantly weaker chiro-optical responses close to normal incidence. Here, we address the challenge of realizing strong intrinsic chirality from thin, planar dielectric nanostructures. Most notably, we experimentally achieve near-unity circular dichroism with ~90% of the light with the chosen helicity being transmitted at a wavelength of 540 nm. This is the highest value demonstrated to date for any geometry in the visible spectrum. We interpret this result within the charge-current multipole expansion framework and show that the excitation of higher-order multipoles is responsible for the giant circular dichroism. These experimental results enable the realization of high-performance miniaturized chiro-optical components in a scalable manner at optical frequencies.
Original language | English (US) |
---|---|
Pages (from-to) | 17158-17158 |
Number of pages | 1 |
Journal | Light: Science & Applications |
Volume | 7 |
Issue number | 2 |
DOIs | |
State | Published - Feb 23 2018 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): OSR-2016-CRG5-2995
Acknowledgements: This work was supported in part by the Air Force Office of Scientific Research (MURI, Grant Nos FA9550-14-1-0389 and FA9550-16-1-0156) and Thorlabs Inc. We gratefully acknowledge financial support from King Abdullah University of Science and Technology under Award OSR-2016-CRG5-2995. AYZ thanks Harvard SEAS and A*STAR Singapore under the National Science Scholarship scheme. WTC acknowledges postdoctoral fellowship support from the Ministry of Science and Technology, Taiwan (Grant No. 104-2917-I-564-058). YWH and CWQ are supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP15-2015-03). This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation under NSF Award No. 1541959. CNS is a part of Harvard University.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.