Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat

Madhav Bhatta, Alexey Morgounov, Vikas Belamkar, Stephen N. Wegulo, Abdelfattah A. Dababat, Gül Erginbas-Orakci, Mustapha El Bouhssini, Pravin Gautam, Jesse Poland, Nilüfer Akci, Lütfü Demir, Ruth Wanyera, P. Stephen Baenziger

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Genetic resistance against biotic stress is a major goal in many wheat breeding programs. However, modern wheat cultivars have a limited genetic variation for disease and pest resistance and there is always a possibility of the evolution of new diseases and pests to overcome previously identified resistance genes. A total of 125 synthetic hexaploid wheats (SHWs; 2n = 6x = 42, AABBDD, Triticum aestivum L.) were characterized for resistance to fungal pathogens that cause wheat rusts (leaf; Puccinia triticina, stem; P. graminis f.sp. tritici, and stripe; P. striiformis f.sp. tritici) and crown rot (Fusarium spp.); cereal cyst nematode (Heterodera spp.); and Hessian fly (Mayetiola destructor). A wide range of genetic variation was observed among SHWs for multiple (two to five) biotic stresses and 17 SHWs that were resistant to more than two stresses. The genomic regions and potential candidate genes conferring resistance to these biotic stresses were identified from a genome-wide association study (GWAS). This GWAS study identified 124 significant marker-trait associations (MTAs) for multiple biotic stresses and 33 of these were found within genes. Furthermore, 16 of the 33 MTAs present within genes had annotations suggesting their potential role in disease resistance. These results will be valuable for pyramiding novel genes/genomic regions conferring resistance to multiple biotic stresses from SHWs into elite bread wheat cultivars and providing further insights on a wide range of stress resistance in wheat.
Original languageEnglish (US)
JournalInternational Journal of Molecular Sciences
Volume20
Issue number15
DOIs
StatePublished - Aug 1 2019
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

ASJC Scopus subject areas

  • Organic Chemistry
  • Spectroscopy
  • Molecular Biology
  • Catalysis
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat'. Together they form a unique fingerprint.

Cite this