Genetic improvement of tomato by targeted control of fruit softening

Selman Uluisik, Natalie H Chapman, Rebecca Smith, Mervin Poole, Gary Adams, Richard B Gillis, Tabot M.D. Besong, Judith Sheldon, Suzy Stiegelmeyer, Laura Perez, Nurul Samsulrizal, Duoduo Wang, Ian D Fisk, Ni Yang, Charles Baxter, Daniel Rickett, Rupert Fray, Barbara Blanco-Ulate, Ann L T Powell, Stephen E HardingJim Craigon, Jocelyn K C Rose, Eric A Fich, Li Sun, David S Domozych, Paul D Fraser, Gregory A Tucker, Don Grierson, Graham B Seymour

Research output: Contribution to journalArticlepeer-review

250 Scopus citations

Abstract

Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.
Original languageEnglish (US)
Pages (from-to)950-952
Number of pages3
JournalNature Biotechnology
Volume34
Issue number9
DOIs
StatePublished - Jul 25 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: S.U. was funded by Ministry of Education of the Turkish Republic. The work was partly funded by BBSRC and Syngenta Seeds Ltd. through BBSRC 'stand-alone LINK' grants to P.D.F. and G.B.S. (BB/J015598/1 and BB/J016071/1). As part of the BBSRC grant, Syngenta staff (J.S., S.S., C.B. and D.R.) provided support with generating the transgenic plants, the bioinformatics analysis, the microscopy and writing the paper. G.B.S. and P.D.F. acknowledge support from EU project FP6 EUSOL and the European Cooperation in Science and Technology (COST) Action FA1106. D.D. was funded by US National Science Foundation grants NSF-MRI 1337280 and NSF-MRI 0922805. B.B.-U. and A.L.T.P. were funded by US National Science Foundation grants IOS 0957264 and IOS 0544504. J.R. was funded by a grant (IOS-1339287) from the Plant Genome Research Program of the US National Science Foundation. We acknowledge Syngenta Crop Protection, Research Triangle Park, North Carolina, USA, M. Franco for cDNA library preparation and J. Ni for RNASeq quality checks, read alignment and gene counting. We acknowledge J. Jones, V. Nekrasov and S. Kamoun, T.S.L. and The Gatsby Charitable Foundation for provision of the CRISPR-Cas 9 vectors. We also thank M. Bennett and J. Labavitch for useful discussions. COS488 was kindly provided by J. Mravec and W.G.T. Willats of the Department of Plant and Environmental Sciences of the University of Copenhagen.

Fingerprint

Dive into the research topics of 'Genetic improvement of tomato by targeted control of fruit softening'. Together they form a unique fingerprint.

Cite this