Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis

Marlene Wesselmann, Mercedes González-Wangüemert, Ester A. Serrão, Aschwin H. Engelen, Lionel Renault, José R. García-March, Carlos M. Duarte, Iris E. Hendriks*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

For marine meta-populations with source-sink dynamics knowledge about genetic connectivity is important to conserve biodiversity and design marine protected areas (MPAs). We evaluate connectivity of a Mediterranean sessile species, Pinna nobilis. To address a large geographical scale, partial sequences of cytochrome oxidase I (COI, 590 bp) were used to evaluate phylogeographical patterns in the Western Mediterranean, and in the whole basin using overlapping sequences from the literature (243 bp). Additionally, we combined (1) larval trajectories based on oceanographic currents and early life-history traits and (2) 10 highly polymorphic microsatellite loci collected in the Western Mediterranean. COI results provided evidence for high diversity and low inter-population differentiation. Microsatellite genotypes showed increasing genetic differentiation with oceanographic transport time (isolation by oceanographic distance (IBD) set by marine currents). Genetic differentiation was detected between Banyuls and Murcia and between Murcia and Mallorca. However, no genetic break was detected between the Balearic populations and the mainland. Migration rates together with numerical Lagrangian simulations showed that (i) the Ebro Delta is a larval source for the Balearic populations (ii) Alicante is a sink population, accumulating allelic diversity from nearby populations. The inferred connectivity can be applied in the development of MPA networks in the Western Mediterranean.

Original languageEnglish (US)
Article number4770
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

Bibliographical note

Funding Information:
This is a contribution to project MEDEICG funded by the Spanish Ministry of Economy and Competitiveness (CTM2009-07013). IEH was supported by Ramon y Cajal Fellowship RYC2014-14970, cofunded by the Conselleria d’Innovació, Recerca i Turisme of the Balearic Government (Pla de ciència, tecnologia, innovació i emprenedoria 2013-2017) and the Spanish Ministry of Economy, Industry and Competitiveness IFCT Investigator Programme-Career Development (IF/00998/2014) supported MGW and AHE was supported by FCT fellowships SFRH/BPD/63703/2009 and SFRH/BPD/107878/2015. Lionel Renault appreciates support from the National Science Foundation (OCE-1419450) and Ester Serrao thanks the support of FCT for their CCMAR team via excellence research line EXCL/AAG-GLO/0661/2012. JRGM got funding from Albert II of Monaco Foundation for the study of P. nobilis populations from (Calpe) Alicante. The authors would like to collectively thank Pau Saa Sendra, Micaela García Martinez, Sandrine Fanfard and Jean-Claude for help during the sampling campaign, Cristina Paulino and Marta Valente for the genotyping work at CCMAR and Hannah Wesselmann for the preparation of figures.

Publisher Copyright:
© 2018 The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis'. Together they form a unique fingerprint.

Cite this