TY - JOUR
T1 - GeneSetCluster: A tool for summarizing and integrating gene-set analysis results
AU - Ewing, Ewoud
AU - Planell-Picola, Nuria
AU - Jagodic, Maja
AU - Gomez-Cabrero, David
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-16
PY - 2020/10/7
Y1 - 2020/10/7
N2 - Background: Gene-set analysis tools, which make use of curated sets of molecules grouped based on their shared functions, aim to identify which gene-sets are over-represented in the set of features that have been associated with a given trait of interest. Such tools are frequently used in gene-centric approaches derived from RNA-sequencing or microarrays such as Ingenuity or GSEA, but they have also been adapted for interval-based analysis derived from DNA methylation or ChIP/ATAC-sequencing. Gene-set analysis tools return, as a result, a list of significant gene-sets. However, while these results are useful for the researcher in the identification of major biological insights, they may be complex to interpret because many gene-sets have largely overlapping gene contents. Additionally, in many cases the result of gene-set analysis consists of a large number of gene-sets making it complicated to identify the major biological insights. Results: We present GeneSetCluster, a novel approach which allows clustering of identified gene-sets, from one or multiple experiments and/or tools, based on shared genes. GeneSetCluster calculates a distance score based on overlapping gene content, which is then used to cluster them together and as a result, GeneSetCluster identifies groups of gene-sets with similar gene-set definitions (i.e. gene content). These groups of gene-sets can aid the researcher to focus on such groups for biological interpretations. Conclusions: GeneSetCluster is a novel approach for grouping together post gene-set analysis results based on overlapping gene content. GeneSetCluster is implemented as a package in R. The package and the vignette can be downloaded at https://github.com/TranslationalBioinformaticsUnit
AB - Background: Gene-set analysis tools, which make use of curated sets of molecules grouped based on their shared functions, aim to identify which gene-sets are over-represented in the set of features that have been associated with a given trait of interest. Such tools are frequently used in gene-centric approaches derived from RNA-sequencing or microarrays such as Ingenuity or GSEA, but they have also been adapted for interval-based analysis derived from DNA methylation or ChIP/ATAC-sequencing. Gene-set analysis tools return, as a result, a list of significant gene-sets. However, while these results are useful for the researcher in the identification of major biological insights, they may be complex to interpret because many gene-sets have largely overlapping gene contents. Additionally, in many cases the result of gene-set analysis consists of a large number of gene-sets making it complicated to identify the major biological insights. Results: We present GeneSetCluster, a novel approach which allows clustering of identified gene-sets, from one or multiple experiments and/or tools, based on shared genes. GeneSetCluster calculates a distance score based on overlapping gene content, which is then used to cluster them together and as a result, GeneSetCluster identifies groups of gene-sets with similar gene-set definitions (i.e. gene content). These groups of gene-sets can aid the researcher to focus on such groups for biological interpretations. Conclusions: GeneSetCluster is a novel approach for grouping together post gene-set analysis results based on overlapping gene content. GeneSetCluster is implemented as a package in R. The package and the vignette can be downloaded at https://github.com/TranslationalBioinformaticsUnit
UR - https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03784-z
UR - http://www.scopus.com/inward/record.url?scp=85092528835&partnerID=8YFLogxK
U2 - 10.1186/s12859-020-03784-z
DO - 10.1186/s12859-020-03784-z
M3 - Article
C2 - 33028195
SN - 1471-2105
VL - 21
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - 1
ER -