Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study

Jessica Y. Luo, Robert H. Condon, Charles A. Stock, Carlos M. Duarte, Cathy H. Lucas, Kylie A. Pitt, Robert K. Cowen

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Among marine organisms, gelatinous zooplankton (GZ; cnidarians, ctenophores, and pelagic tunicates) are unique in their energetic efficiency, as the gelatinous body plan allows them to process and assimilate high proportions of oceanic carbon. Upon death, their body shape facilitates rapid sinking through the water column, resulting in carcass depositions on the seafloor (“jelly-falls”). GZ are thought to be important components of the biological pump, but their overall contribution to global carbon fluxes remains unknown. Using a data-driven, 3-dimensional, carbon-cycle model resolved to a 1° global grid, with a Monte Carlo uncertainty analysis, we estimate that GZ consumed 7.9-13 Pg C y-1 in phytoplankton and zooplankton, resulting in a net production of 3.9-5.8 Pg C y-1 in the upper ocean (top 200 m), with the largest fluxes from pelagic tunicates. Non-predation mortality (carcasses) comprised 25% of GZ-production, and combined with the much greater fecal matter flux, total GZ particulate organic carbon (POC) export at 100 m was 1.6-5.2 Pg C y-1, equivalent to 32-40% of the global POC export. The fast sinking GZ export resulted in a high transfer efficiency (Teff) of 38-62% to 1000 m, and 25-40% to the seafloor. Finally, jelly-falls at depths > 50 m are likely unaccounted for in current POC flux estimates and could increase benthic POC flux by 8-35%. The significant magnitude of and distinct sinking properties of GZ fluxes support a critical yet under-recognized role of GZ carcasses and fecal matter to the biological pump and air-sea carbon balance.
Original languageEnglish (US)
JournalGlobal Biogeochemical Cycles
DOIs
StatePublished - Aug 27 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Many thanks to Su Sponaugle, Kelly Robinson, Jim Ruzicka, Martin Lilley, and Matt Long for helpful discussions. We also thank John Dunne and two anonymous reviewers for comments that improved previous versions of this manuscript. JYL acknowledges support from NSF (OCE Grant 1419987 to RKC and S. Sponaugle), and the NOAA Marine Ecosystem Tipping Points initiative. We also acknowledge support from Biological and Chemical Oceanography Data Management Office (BCO-DMO) for hosting the JeDI dataset.

Fingerprint

Dive into the research topics of 'Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study'. Together they form a unique fingerprint.

Cite this