Abstract
We demonstrated a high-speed 1×2 single-input and multiple-output (SIMO) diffuse-line-of-sight (diffuse-LOS) ultraviolet-C (UVC) solar-blind communication link over a distance of 5 meters. To approach the Shannon limit and improve the spectral efficiency, we implemented probabilistically shaped discrete multitone modulation. As compared to a single-input and single-output (SISO) counterpart, we observed significant improvement in the SIMO link in terms of the angle of view of the receiver and the immunity to emulated weather condition. A wide angle of view of ± 9° is achieved in the SIMO system, with up to a 1.09-Gbit/s achievable information rate (AIR) and a minimum value of 0.24 Gbit/s. Moreover, the bit error rate of the SIMO link in emulated foggy conditions is lowered significantly when compared to that of the SISO link. This work highlights the practicality of UVC communication over realistic distances and in turbulent environments to fill the research gap in high-speed, solar-blind communication.
Original language | English (US) |
---|---|
Pages (from-to) | 9111 |
Journal | Optics Express |
Volume | 28 |
Issue number | 7 |
DOIs | |
State | Published - Mar 16 2020 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): BAS/1/1614-01-01, GEN/1/6607-01-01, KCR/1/2081-01-01, KCR/1/4114-01-01, REP/1/2878-01-01
Acknowledgements: King Abdullah University of Science and Technology (BAS/1/1614-01-01, GEN/1/6607-01-01, KCR/1/2081-01-01, KCR/1/4114-01-01, REP/1/2878-01-01); King Abdulaziz City for Science and Technology (KACST TIC R2-FP-008); National Natural Science Foundation of China
(61925104); National Key Research and Development Program of China (2017YFB0403603).