Abstract
In distributed architecture control problems, there is a collection of interconnected decision-making components that seek to realize desirable collective behaviors through local interactions and by processing local information. Applications range from autonomous vehicles to energy to transportation. One approach to control of such distributed architectures is to view the components as players in a game. In this approach, two design considerations are the components’ incentives and the rules that dictate how components react to the decisions of other components. In game-theoretic language, the incentives are defined through utility functions, and the reaction rules are online learning dynamics. This chapter presents an overview of this approach, covering basic concepts in game theory, special game classes, measures of distributed efficiency, utility design, and online learning rules, all with the interpretation of using game theory as a prescriptive paradigm for distributed control design.
Original language | English (US) |
---|---|
Title of host publication | Handbook of Dynamic Game Theory |
Publisher | Springer Nature |
Pages | 1-36 |
Number of pages | 36 |
ISBN (Print) | 9783319273358 |
DOIs | |
State | Published - Jul 12 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported by ONR Grant #N00014-17-1-2060 and NSF Grant #ECCS-1638214 and by funding from King Abdullah University of Science and Technology (KAUST).