Fully Solution-Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers

Stefan Bachevillier, Hua Kang Yuan, Andrew Strang, Artem Levitsky, Gitti L. Frey, Andreas Hafner, Donal D.C. Bradley, Paul N. Stavrinou, Natalie Stingelin

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Managing the interference effects from thin (multi-)layers allows for the control of the optical transmittance/reflectance of widely used and technologically significant structures such as antireflection coatings (ARCs) and distributed Bragg reflectors (DBRs). These rely on the destructive/constructive interference between incident, reflected, and transmitted radiation. While known for over a century and having been extremely well investigated, the emergence of printable and large-area electronics brings a new emphasis: the development of materials capable of transferring well-established ideas to a solution-based production. Here, demonstrated is the solution-fabrication of ARCs and DBRs utilizing alternating layers of commodity plastics and recently developed organic/inorganic hybrid materials comprised of poly(vinyl alcohol) (PVAl), cross-linked with titanium oxide hydrates. Dip-coated ARCs exhibit an 88% reduction in reflectance across the visible compared to uncoated glass, and fully solution-coated DBRs provide a reflection of >99% across a 100 nm spectral band in the visible region. Detailed comparisons with transfermatrix methods (TMM) highlight their excellent optical quality including extremely low optical losses. Beneficially, when exposed to elevated temperatures, the hybrid material can display a notable, reproducible, and irreversible change in refractive index and film thickness while maintaining excellent optical performance allowing postdeposition tuning, e.g., for thermo-responsive applications, including security features and product-storage environment monitoring.
Original languageEnglish (US)
JournalAdvanced Functional Materials
Issue number21
StatePublished - May 23 2019
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2019-11-27


Dive into the research topics of 'Fully Solution-Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers'. Together they form a unique fingerprint.

Cite this