Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

Zhendong Zhang, Tariq Ali Alkhalifah

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.
Original languageEnglish (US)
Pages (from-to)166-180
Number of pages15
JournalGeophysical Prospecting
Volume65
DOIs
StatePublished - Oct 4 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We thank the editors and two anonymous reviewers for constructive suggestions that improved the manuscript greatly. We thank KAUST for its support and specifically the seismic wave analysis group members for their valuable insights. We thank Ehsan Naeini from Ikon sciences for useful discussions. Zhen-dong Zhang thanks Yike Liu for his help and also the National Nature Science Foundation of China (Grant No. 41430321) for its funding.

Fingerprint

Dive into the research topics of 'Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media'. Together they form a unique fingerprint.

Cite this