From capture to simulation: connecting forward and inverse problems in fluids

James Gregson, Ivo Ihrke, Nils Thuerey, Wolfgang Heidrich

Research output: Chapter in Book/Report/Conference proceedingConference contribution

76 Scopus citations

Abstract

We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.
Original languageEnglish (US)
Title of host publicationACM Transactions on Graphics
PublisherAssociation for Computing Machinery (ACM)
Pages1-11
Number of pages11
DOIs
StatePublished - Jul 27 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'From capture to simulation: connecting forward and inverse problems in fluids'. Together they form a unique fingerprint.

Cite this